On graphs whose chromatic transversal number is two
نویسندگان
چکیده
منابع مشابه
Chromatic Transversal Domatic Number of Graphs
The chromatic number χ(G) of a graph G is the minimum number of colours required to colour the vertices of G in such a way that no two adjacent vertices of G receive the same colour. A partition of V into χ(G) independent sets (called colour classes) is said to be a χpartition of G. A set S ⊆ V is called a dominating set of G if every vertex in V − S is adjacent to a vertex in S. A dominating s...
متن کاملThe locating-chromatic number for Halin graphs
Let G be a connected graph. Let f be a proper k -coloring of G and Π = (R_1, R_2, . . . , R_k) bean ordered partition of V (G) into color classes. For any vertex v of G, define the color code c_Π(v) of v with respect to Π to be a k -tuple (d(v, R_1), d(v, R_2), . . . , d(v, R_k)), where d(v, R_i) is the min{d(v, x)|x ∈ R_i}. If distinct vertices have distinct color codes, then we call f a locat...
متن کاملThe locating chromatic number of the join of graphs
Let $f$ be a proper $k$-coloring of a connected graph $G$ and $Pi=(V_1,V_2,ldots,V_k)$ be an ordered partition of $V(G)$ into the resulting color classes. For a vertex $v$ of $G$, the color code of $v$ with respect to $Pi$ is defined to be the ordered $k$-tuple $c_{{}_Pi}(v)=(d(v,V_1),d(v,V_2),ldots,d(v,V_k))$, where $d(v,V_i)=min{d(v,x):~xin V_i}, 1leq ileq k$. If distinct...
متن کاملEla Graphs Whose Minimal Rank Is Two
Let F be a field, G = (V, E) be an undirected graph on n vertices, and let S(F, G) be the set of all symmetric n × n matrices whose nonzero off-diagonal entries occur in exactly the positions corresponding to the edges of G. For example, if G is a path, S(F, G) consists of the symmetric irreducible tridiagonal matrices. Let mr(F, G) be the minimum rank over all matrices in S(F, G). Then mr(F, G...
متن کاملGraphs whose minimal rank is two
Let F be a field, G = (V, E) be an undirected graph on n vertices, and let S(F,G) be the set of all symmetric n × n matrices whose nonzero off-diagonal entries occur in exactly the positions corresponding to the edges of G. For example, if G is a path, S(F,G) consists of the symmetric irreducible tridiagonal matrices. Let mr(F,G) be the minimum rank over all matrices in S(F,G). Then mr(F,G) = 1...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proyecciones (Antofagasta)
سال: 2011
ISSN: 0716-0917
DOI: 10.4067/s0716-09172011000100006